PR-independent neurosteroid regulation of α2-GABA-A receptors in the hippocampus subfields.

نویسندگان

  • Doodipala Samba Reddy
  • Omkaram Gangisetty
  • Xin Wu
چکیده

Progesterone (P) binding to the intracellular progesterone receptors (PRs) plays a key role in epilepsy via modulation of GABA-A receptor plasticity in the brain. This is thought to occur via conversion of P to neurosteroids such as allopregnanolone, an allosteric modulator of GABA-A receptors. In the female brain, the composition of GABA-A receptors is not static and undergoes dynamic spatial changes in response to fluctuations in P and neurosteroid levels. Synaptic α2-containing GABA-A receptors contribute to phasic neuronal excitability and seizure susceptibility. However, the mechanisms underlying α2-subunit plasticity remain unclear. Here, we utilized the neurosteroid synthesis inhibitor finasteride and PR knockout mice to investigate the role of PRs in α2-subunit in the hippocampus. α2-Subunit expression was significantly upregulated during the high-P state of diestrous stage and with P treatment in wildtype and PR knockout mice. In contrast, there was no change in α2-subunit expression when metabolism of P into neurosteroids was blocked by finasteride in both genotypes. These findings suggest that ovarian cycle-related P and neurosteroids regulate α2-GABA-A receptor expression in the hippocampus via a non-PR pathway, which may be relevant to menstrual-cycle related brain conditions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Estrous cycle regulation of extrasynaptic δ-containing GABA(A) receptor-mediated tonic inhibition and limbic epileptogenesis.

The ovarian cycle affects susceptibility to behavioral and neurologic conditions. The molecular mechanisms underlying these changes are poorly understood. Deficits in cyclical fluctuations in steroid hormones and receptor plasticity play a central role in physiologic and pathophysiologic menstrual conditions. It has been suggested that synaptic GABA(A) receptors mediate phasic inhibition in the...

متن کامل

Enrichment of GABAA Receptor α-Subunits on the Axonal Initial Segment Shows Regional Differences

Although it is generally recognized that certain α-subunits of γ-aminobutyric acid type A receptors (GABAARs) form enriched clusters on the axonal initial segment (AIS), the degree to which these clusters vary in different brain areas is not well known. In the current study, we quantified the density, size, and enrichment ratio of fluorescently labeled α1-, α2-, or α3-subunits aggregates co-loc...

متن کامل

Perimenstrual-like hormonal regulation of extrasynaptic δ-containing GABAA receptors mediating tonic inhibition and neurosteroid sensitivity.

Neurosteroids are endogenous regulators of neuronal excitability and seizure susceptibility. Neurosteroids, such as allopregnanolone (AP; 3α-hydroxy-5α-pregnan-20-one), exhibit enhanced anticonvulsant activity in perimenstrual catamenial epilepsy, a neuroendocrine condition in which seizures are clustered around the menstrual period associated with neurosteroid withdrawal (NSW). However, the mo...

متن کامل

A mouse kindling model of perimenstrual catamenial epilepsy.

Catamenial epilepsy is caused by fluctuations in progesterone-derived GABA(A) receptor-modulating anticonvulsant neurosteroids, such as allopregnanolone, that play a significant role in the pathophysiology of epilepsy. However, there is no specific mouse model of catamenial epilepsy. In this study, we developed and characterized a mouse model of catamenial epilepsy by using the neurosteroid-wit...

متن کامل

GABA-mediated membrane oscillations as coincidence detectors for enhancing synaptic efficacy in the developing hippocampus

Spontaneously occurring neuronal oscillations constitute a hallmark of developmental networks. They have been observed in the retina, neocortex, hippocampus, thalamus and spinal cord. In the immature hippocampus the so-called ‘giant depolarizing potentials’ (GDPs) are network-driven membrane oscillations characterized by recurrent membrane depolarization with superimposed fast action potentials...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Brain research

دوره 1659  شماره 

صفحات  -

تاریخ انتشار 2017